MTS Dúplex 655

Equipo compuesto por dos botellas en PRFV Greentank con distribuidores superiores e inferiores y un depósito de sal en polietileno con capacidad para multiples regeneraciones, equipado con doble fondo y válvula de seguridad.

Válvulas WS-655-MTS construidas en noryl de alta resistencia comandadas por pistón horizontal. Conexión 1 ½".

Programador Watermark-MTS: Controla el funcionamiento de todas las columnas, permitiendo una eficaz gestión de la instalación y un fácil control de la misma.

Permite configurar los equipos en funcionamiento alterno, paralelo o por demanda de caudal.

Funciones avanzadas: Periodos de bloqueo de regeneración, salidas de relé configurables, control de dosificaciones posteriores...

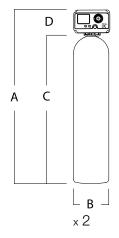
Display multilingüe: inglés, francés, castellano, alemán, ruso e italiano.

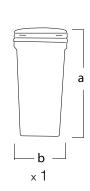
Equipados con resina descalcificadora GreenResin de uso alimentario y alta capacidad, suministrada en sacos de 25 litros.

Base distribuidora de silex de diferentes granulometrías.

Válvula motorizada de bola en acero inoxidable suministrada con cada cabezal para las funciones de alternancia.

Base de sílex de diferentes granulometrías, óptima distribución del flujo de agua mejorando el proceso de regeneración.





Código		920086	920050	920051	920052	920053	920054	920055				
Modelo		MTS-655-2-50	MTS-655-2-85	MTS-655-2-115	MTS-655-2-145	MTS-655-2-200	MTS-655-2-285	MTS-655-2-425				
Litros de resina		50 x 2	85 x 2	115 x 2 apacidad in	145 x 2 Itercambio (200 x 2 OHF x m³) / C	285 x 2 consumo sal	425 x 2 (kg)				
Tabla de capacida	des 96 g	557 4,8	831 8,2	1105 11,0	1388 13,9	1935 19,2	2766 27,4	4154 40,8				
y consumo de sal	161 g	725 8,1	1081 13,7	1437 18,5	1805 23,3	2517 32,2	3598 45,9	5403 68,4				
por regeneración	242 g	866 12,1	1292 20,6	1717 27,8	2158 35,1	3009 48,4	4301 69,0	6459 102,9				
Caudal				Pérdida de carga (kg/cm²)								
Los cálculos de las tablas están calculados	2 m³/h	0,08	0,09	0,07	0,06	0,05	0,05	0,04				
para sistemas en	4 m ³ /h	0,21	0,2	0,18	0,15	0,13	0,12	0,1				
paralelo. Si el equipo está programado en	6 m ³ /h	0,38	0,38	0,33	0,28	0,24	0,23	0,2				
sistema alternativo, el cálculo se debe realizar	8 m ³ /h	0,6	0,59	0,51	0,44	0,39	0,36	0,32				
multiplicando por 0,5.	10 m³/h	0,85	0,83	0,73	0,64	0,57	0,53	0,47				
Caudal	12 m³/h	1,14	1,12	0,98	0,87	0,79	0,74	0,66				
óptimo	14 m³/h	N/A	1,44	1,27	1,14	1,03	0,97	0,88				
Caudal intermitente	16 m³/h	N/A	1,8	1,6	1,44	1,31	1,24	1,13				
Caudal no	18 m³/h	N/A	2,2	1,97	1,77	1,63	1,54	1,41				
recomendado	20 m³/h	N/A	2,65	2,37	2,14	1,98	1,87	1,72				
Consumo de agua												
regeneración en litros		352	598	777	1019	1359	1993	2915				
Depósito de sal en litros		350	350	350	350	500	500	750				
Botella		13 x 54	14 x 65	16 x 65	18 x 65	21 x 62	24 x 72	30 x 72				
Sílex 1,3 - 2,5 mm (kg)		16 x 2	16 x 2	21 x 2	16 x 2	25 x 2	40 x 2	56 x 2				
Sílex 2 - 4 mm (k	g)	-	-	-	32 x 2	50 x 2	56 x 2	88 x 2				
Tarifa		В	В	В	В	В	В	В				

Presión de trabajo: 2 - 8,5 bar Temperatura de trabajo: 4 - 40 °C Tensión de trabajo: 110 / 240 Vac - 24 Vac

Conexión: 1 1/2" BSP

Código	Α	В	С	D	а	b
920086	1604	349	1398	206	1275	740
920050	1880	366	1674	206	1275	740
920051	1911	411	1705	206	1275	740
920052	1928	491	1722	206	1275	740
920053	1927	555	1721	206	1335	840
920054	2124	622	1918	206	1335	840
920055	2346	787	2140	206	1395	960 mm

MTS Tríplex 655

Equipo compuesto por tres botellas en PRFV Greentank con distribuidores superiores e inferiores y dos depósitos de sal en polietileno con capacidad para multiples regeneraciones, equipados con doble fondo y válvula de seguridad.

Válvulas WS-655-MTS construidas en noryl de alta resistencia comandadas por pistón horizontal. Conexión 1 ½".

Programador Watermark-MTS: Controla el funcionamiento de todas las columnas, permitiendo una eficaz gestión de la instalación y un fácil control de la misma.

Permite configurar los equipos en funcionamiento alterno, paralelo o por demanda de caudal.

Funciones avanzadas: Periodos de bloqueo de regeneración, salidas de relé configurables, control de dosificaciones posteriores...

Display multilingüe: inglés, francés, castellano, alemán, ruso e italiano.

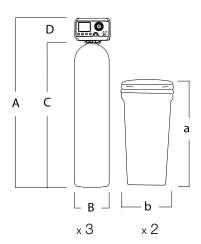
Equipados con resina descalcificadora GreenResin de uso alimentario y alta capacidad, suministrada en sacos de 25 litros.

Base distribuidora de silex de diferentes granulometrías.

Válvula motorizada de bola en acero inoxidable suministrada con cada cabezal para las funciones de alternancia.

Programador MTS.

Base de sílex de diferentes granulometrías, óptima distribución del flujo de agua mejorando el proceso de regeneración.


Código		920057		920058		920059		920060		920061		920062			
Modelo	Modelo			MTS-655-3-85		MTS-655-3-115		MTS-655-3-145		MTS-655-3-200		MTS-655-3-285		MTS-655-3-425	
Litros de resina			85 x 3		115 x 3		145 x 3		200 x 3		285 x 3		425 x 3		
					Capac	idad in	tercam	bio (ºH	F x m ³)	/ Cons	sumo sa	al (kg)			
Tabla de capacida	des 9	6 g	1246	8,2	1657	11,0	2082	13,9	2903	19,2	4149	27,4	6231	40,8	
y consumo de sal	16	51 g	1621	13,7	2155	18,5	2708	23,3	3776	32,2	5397	45,9	8105	68,4	
por regeneración	24	42 g	1938	20,6	2567	27,8	3237	35,1	4514	48,4	6451	69,0	9688	102,9	
Caudal							Pérd	dida de	carga (kg/cm	²)				
Los cálculos de las tablas están calculados	3 m³/h	1	0,09		0,07		0,06		0,05		0,05		0,04		
para sistemas en	6 m ³ /h	ı	0,2		0,18		0,15		0,13		0,12		0,1		
paralelo. Si el equipo está programado en	9 m³/h	ı	0,38		0,33		0,28		0,24		0,23		0,2		
sistema alternativo, el cálculo se debe realizar	12 m³/	'n	0,59		0,51		0,44		0,39		0,36		0,32		
multiplicando por 0,67.	15 m³/	'h	0,83		0,73		0,64		0,57		0,53		0,47		
Caudal	18 m³/	'h	1,12		0,98		0,87		0,79		0,74		0,66		
óptimo	21 m ³ /	'n	1,44		1,27		1,14		1,03		0,97		0,88		
Caudal intermitente	24 m ³ /	/h	1,8		1,6		1,44		1,31		1,24		1,13		
Caudal no	27 m ³ /	′h	2,2		1,97		1,77		1,63		1,54		1,41		
recomendado	30 m ³ /	/h	2,65		2,37		2,14		1,98		1,87		1,72		

Consumo de agua	1					
regeneración en litros	598	777	1019	1359	1993	2915
Depósito de sal en litros	350 x 2	350 x 2	350 x 2	500 x 2	500 x 2	750 x 2
Botella	14 x 65	16 x 65	18 x 65	21 x 62	24 x 72	30 x 72
Sílex 1,3 - 2,5 mm (kg)	16 x 3	21 x 3	16 x 3	25 x 3	40 x 3	56 x 3
Sílex 2 - 4 mm (kg)	-	_	32 x 3	50 x 3	56 x 3	88 x 3
Tarifa	В	В	В	В	В	В

Presión de trabajo: 2 - 8,5 bar Temperatura de trabajo: 4 - 40 °C

Tensión de trabajo: 110 / 240 Vac - 24 Vac

Conexión: 1 1/2" BSP

С	ódigo	Α	В	С	D	а	b
9	20057	1880	366	1674	206	1275	740
9	20058	1911	411	1705	206	1275	740
9	20059	1928	491	1722	206	1275	740
9	20060	1927	555	1721	206	1335	840
9	20061	2124	622	1918	206	1335	840
9	20062	2346	787	2140	206	1395	960 mm

MTS Cuadrúplex 655

Equipo compuesto por cuatro botellas en PRFV Greentank con distribuidores superiores e inferiores y dos depósitos de sal en polietileno con capacidad para multiples regeneraciones, equipados con doble fondo y válvula de seguridad.

Válvulas WS-655-MTS construidas en noryl de alta resistencia comandadas por pistón horizontal. Conexión 1 ½".

Programador Watermark-MTS: Controla el funcionamiento de todas las columnas, permitiendo una eficaz gestión de la instalación y un fácil control de la misma.

Permite configurar los equipos en funcionamiento alterno, paralelo o por demanda de caudal.

Funciones avanzadas: Periodos de bloqueo de regeneración, salidas de relé configurables, control de dosificaciones posteriores...

Display multilingüe: inglés, francés, castellano, alemán, ruso e italiano.

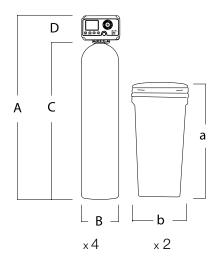
Equipados con resina descalcificadora GreenResin de uso alimentario y alta capacidad, suministrada en sacos de 25 litros.

Base distribuidora de silex de diferentes granulometrías.

Válvula motorizada de bola en acero inoxidable suministrada con cada cabezal para las funciones de alternancia.

Programador MTS.

Base de sílex de diferentes granulometrías, óptima distribución del flujo de agua mejorando el proceso de regeneración.



Código		920064		92006	5	92006	6	92006	7	920068		920069		
Modelo		MTS-655-4-85		MTS-655-	MTS-655-4-115		MTS-655-4-145		MTS-655-4-200		MTS-655-4-285		MTS-655-4-425	
itros de resina		85 x 4		115 x 4	115 x 4		145 x 4		200 x 4		285 x 4		425 x 4	
			С	apacida	d inter	cambio	(°HF x ı	m³) / Co	onsumo	sal (k	.g)			
abla de capacidad	es 96 g	1662	8,2	2209	11,0	2776	13,9	3871	19,2	5532	27,4	8309	40,8	
consumo de sal	161 g	2161	13,7	2873	18,5	3611	23,3	5034	32,2	7196	45,9	10806	68,4	
oor regeneración	242 g	2584	20,6	3435	27,8	4316	35,1	6018	48,4	8602	69,0	12918	102	
Caudal						Pérdi	da de d	arga (k	g/cm²)					
Los cálculos de las	4 m ³ /h	0,09		0,07		0,06		0,05		0,05		0,04		
tablas están calculados para sistemas en	8 m³/h	0,2		0,18		0,15		0,13		0,12		0,1		
paralelo. Si el equipo está programado en	12 m³/h	0,38		0,33		0,28		0,24		0,23		0,2		
sistema alternativo, el	16 m³/h	0,59		0,51		0,44		0,39		0,36		0,32		
cálculo se debe realizar multiplicando por 0,75.	20 m ³ /h	0,83		0,73		0,64		0,57		0,53		0,47		
	24 m³/h	1,12		0,98		0,87		0,79		0,74		0,66		
Caudal óptimo	28 m³/h	1,44		1,27		1,14		1,03		0,97		0,88		
Caudal	32 m³/h	1,8		1,6		1,44		1,31		1,24		1,13		
intermitente	36 m³/h	2,2		1,97		1,77		1,63		1,54		1,41		
Caudal no recomendado	40 m ³ /h	2,65		2,37		2,14		1,98		1,87		1,72		
Consumo de agua	`													
regeneración en lit	ros	598		777		1019		1359		1993		2915		
Depósito de sal e	n litros	350 x	2	350 x	2	350 x	2	500 x	2	500	x 2	750	κ 2	
Botella		14 x 6	5	16 x 6	5	18 x 6	5	21 x 6	2	24 x	72	30 x	72	
Sílex 1,3 - 2,5 mn	n (kg)	16 x 4		21 x 4		16 x 4		25 x 4		40 x	4	56 x	4	
Sílex 2 - 4 mm (k	g)	-		-		32 x 4	ļ.	50 x 4	ļ	56 x	4	88 x	4	
€		В		В		В		В		В		В		

Presión de trabajo: 2 - 8,5 bar Temperatura de trabajo: 4 - 40 °C

Tensión de trabajo: 110 / 240 Vac - 24 Vac

Conexión: 1 1/2" BSP

Código	Α	В	С	D	а	b
920064	1880	366	1674	206	1275	740
920065	1911	411	1705	206	1275	740
920066	1928	491	1722	206	1275	740
920067	1927	555	1721	206	1335	840
920068	2124	622	1918	206	1335	840
920069	2346	787	2140	206	1395	960 mm